Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing hearts.

نویسندگان

  • Ramesh C Gupta
  • Sudhish Mishra
  • Sharad Rastogi
  • Makoto Imai
  • Omar Habib
  • Hani N Sabbah
چکیده

Type 1 protein phosphatase (PP1) is a negative regulator of cardiac function. However, studies on the status and regulation of sarcoplasmic reticulum (SR)-associated PP1 activity in failing hearts are limited. We studied PP1 activity and protein and mRNA expression of the catalytic subunit of PP1 (PP1C) and protein levels of PP1-specific inhibitors [inhibitor 1 (Inh-1) and inhibitor 2 (Inh-2)] in the left ventricular (LV) myocardium of 6 dogs with heart failure (HF; LV ejection fraction, 23 +/- 2%) and 6 normal dogs. In failing LV tissue, PP1 activity values (expressed as pmol 32P. min-1. mg of noncollagen protein-1) in the homogenate, crude membranes, cytosol, and purified SR were increased by 52, 54, 55, and 72%, respectively. Trypsin treatment released PP1 but not type 2A protein phosphatase from the SR. In the supernatant of trypsin-treated SR, PP1 activity was approximately 24% higher in failing hearts than in normal control hearts. A similar increase in protein expression of PP1C was observed in the nontrypsinized SR. Heat-denatured phosphorylated SR inhibited PP1 activity by 30%, which suggests the presence of Inh-1 or -2 or both in the SR. With the use of a specific antibody, both Inh-1 and -2 proteins were found in the SR; the former was decreased by 56% in the failing SR, whereas the latter did not change. These results suggest that protein phosphatase activity bound to the SR is increased and is predominantly type 1. Increased SR-associated PP1 activity in failing hearts appears to be due partly to increased expression of PP1C and partly to reduced levels of Inh-1 but not Inh-2 protein. Thus inhibition of PP1 activity in the SR appears to be a potential therapeutic target for improving LV function in failing hearts, because it may lead to increased SR Ca2+ uptake, which is impaired in failing hearts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type 1 phosphatase, a negative regulator of cardiac function.

Increases in type 1 phosphatase (PP1) activity have been observed in end stage human heart failure, but the role of this enzyme in cardiac function is unknown. To elucidate the functional significance of increased PP1 activity, we generated models with (i) overexpression of the catalytic subunit of PP1 in murine hearts and (ii) ablation of the PP1-specific inhibitor. Overexpression of PP1 (thre...

متن کامل

Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes.

The protein phosphatase inhibitor-1 (PPI-1) inhibits phosphatase type-1 (PP1) only when phosphorylated by protein kinase A and could play a pivotal role in the phosphorylation/dephosphorylation balance. Rat cardiac PPI-1 was cloned by reverse transcriptase-polymerase chain reaction, expressed in Eschericia coli, evaluated in phosphatase assays, and used to generate an antiserum. An adenovirus w...

متن کامل

Enhanced cardiac function in mice overexpressing protein phosphatase Inhibitor-2.

OBJECTIVE Protein phosphatase 1 (PP1) has been implicated in the control of cardiac function. Cardiac specific overexpression of the catalytic subunit, PP1c, results in hypertrophy and depressed contractility. METHODS To further address the role of PP1, transgenic mice (TG) were generated that overexpress in heart a functional COOH-terminally truncated form (amino acids 1-140) of the PP1 inhi...

متن کامل

Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium.

BACKGROUND In the failing human heart, sarcoplasmic reticulum (SR) calcium handling is impaired, and therefore, calcium elimination and diastolic function may depend on the expression of sarcolemmal Na+-Ca2+ exchanger. METHODS AND RESULTS Force-frequency relations were studied in ventricular muscle strip preparations from failing human hearts (n=29). Protein levels of Na+-Ca2+ exchanger and S...

متن کامل

Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure.

The regulation of cytosolic Ca2+ concentration during excitation-contraction coupling is altered in the failing human heart. Previous studies have focused on disturbances in Ca2+ release and reuptake from the sarcoplasmic reticulum (SR), whereas functional studies of the cardiac Na(+)-Ca2+ exchanger, another important determinant of myocyte homeostasis, are lacking for the failing human heart. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 285 6  شماره 

صفحات  -

تاریخ انتشار 2003